*$^#+$ *$^#-$ エネルギーの空間配置'電子'が幾何的に化学的な性質のもととなる
1. principal quantum number n=1,2, ... ,$\inf$
2. angular momentum l =0,1,2, ... ,n-1
3. magnetic qn (z component o angular momentum) m = 0,$\pm$1,$\pm$2, ... ,$\pm$l
spatial part of wave function <-> spin part
(1,0,0) s orbital
(2,0,0) 2s
(2,1,-) 2p
(2,1,0) 2p$_z$
(2,1,+1) 2p$_x$
(2,1,-1) 2p$_y$
(-,2,-) #d 3d$_xy$ 3d$_yz$ 3d$_{z^2}$
(-,3,-) #f
total amount of energy is dictated only by 'n' number
$\[\Psi_{nlm}(r,\theta,\phi)\]^2 = PDF$ Probabilty per unit volume.(Max Born interpretation)
$a_0 \approxto 0.5\AA$ Bohr's radius
"radial nodes"
Lec 7 | MIT 5.111 Principles of Chemical Science, Fall 2005
1. principal quantum number n=1,2, ... ,$\inf$
2. angular momentum l =0,1,2, ... ,n-1
3. magnetic qn (z component o angular momentum) m = 0,$\pm$1,$\pm$2, ... ,$\pm$l
spatial part of wave function <-> spin part
(1,0,0) s orbital
(2,0,0) 2s
(2,1,-) 2p
(2,1,0) 2p$_z$
(2,1,+1) 2p$_x$
(2,1,-1) 2p$_y$
(-,2,-) #d 3d$_xy$ 3d$_yz$ 3d$_{z^2}$
(-,3,-) #f
total amount of energy is dictated only by 'n' number
$\[\Psi_{nlm}(r,\theta,\phi)\]^2 = PDF$ Probabilty per unit volume.(Max Born interpretation)
$a_0 \approxto 0.5\AA$ Bohr's radius
"radial nodes"
Lec 7 | MIT 5.111 Principles of Chemical Science, Fall 2005
No comments:
Post a Comment