Saturday, January 31, 2009
Friday, January 30, 2009
chema1 40 molecular orbitals
MO diagram
molecular absorption bands, not lines. due to nucleus vibrating.
$\sigma_{1S}$ bonding orbital
$\sigma^*_{1S}$ antibonding orbital
Bond order = $\frac{#bonding-electrons - #antibonding-e.}{2}$ > 0 if stable
unpaired electrons ... attracted to magnet O2 Yes(paramagnetic) N2|F2 No(diamagnetic) & "lewis dot structure" cannot predict this.
2p + 2p -> $\sigma_{2P}$ + $\sigma^*_{2P}$ + $\pi_{2P}$ + $\pi^*_{2P}$
pオービタルからパイだけでなくシグマもできる
molecular absorption bands, not lines. due to nucleus vibrating.
$\sigma_{1S}$ bonding orbital
$\sigma^*_{1S}$ antibonding orbital
Bond order = $\frac{#bonding-electrons - #antibonding-e.}{2}$ > 0 if stable
unpaired electrons ... attracted to magnet O2 Yes(paramagnetic) N2|F2 No(diamagnetic) & "lewis dot structure" cannot predict this.
2p + 2p -> $\sigma_{2P}$ + $\sigma^*_{2P}$ + $\pi_{2P}$ + $\pi^*_{2P}$
pオービタルからパイだけでなくシグマもできる
Thursday, January 29, 2009
Wednesday, January 28, 2009
Monday, January 26, 2009
Saturday, January 24, 2009
Friday, January 23, 2009
Thursday, January 22, 2009
Sunday, January 18, 2009
5 11 1 36 review
"cofactor" catalyst helper
electrolytic <-> galvanic
Lec 36 | MIT 5.111 Principles of Chemical Science, Fall 2005
electrolytic <-> galvanic
Lec 36 | MIT 5.111 Principles of Chemical Science, Fall 2005
5 11 1 35 catalyst
catalyst 'stabilize' or lower transition state (activated complex)
affects rate, but no change in thermodynamics
inhibitor <-> catalyst
heterogeneous ex. metal solid works as catalyst for a gass
reactants@chemistry -> substrates@biochemistry
'active site' ES complex product P
! dynamics <-> kinetics
Michaelis–Menten K${}_M$をv${}_{max}$とその半分を与える濃度から実験的に求めることができる(wikipedia)
peptide bond cleaved protease
Lec 35 | MIT 5.111 Principles of Chemical Science, Fall 2005
affects rate, but no change in thermodynamics
inhibitor <-> catalyst
heterogeneous ex. metal solid works as catalyst for a gass
reactants@chemistry -> substrates@biochemistry
'active site' ES complex product P
! dynamics <-> kinetics
Michaelis–Menten K${}_M$をv${}_{max}$とその半分を与える濃度から実験的に求めることができる(wikipedia)
peptide bond cleaved protease
Lec 35 | MIT 5.111 Principles of Chemical Science, Fall 2005
Sunday, January 11, 2009
5 11 1 34
Plot $\ln$ 'k' - inverse Temperature ... intercept 'A' the facor A| pre-exponential factor
slope ... Energy of activation / R "reaction coordinate" diagram Potential Energy-Reaction Coordinates
Big Activation Energy -> more sensitive to temperature change
$\Delta$H = $\Delta$E + $\Delta$(PV) (1-2% for gas 0% for solid,liquid)
if 1st step in 2 step RxN is exothermic, raising temperature might slow the overall reaction.
Lec 34 | MIT 5.111 Principles of Chemical Science, Fall 2005
slope ... Energy of activation / R "reaction coordinate" diagram Potential Energy-Reaction Coordinates
Big Activation Energy -> more sensitive to temperature change
$\Delta$H = $\Delta$E + $\Delta$(PV) (1-2% for gas 0% for solid,liquid)
if 1st step in 2 step RxN is exothermic, raising temperature might slow the overall reaction.
Lec 34 | MIT 5.111 Principles of Chemical Science, Fall 2005
Friday, January 09, 2009
5 11 1 33 Reaction Mechanism
k${}_{observed}$ k - [reactants] relationship k - [products] relationship
-> come up with appropriate mechanism to fit the experimental relationships
[NO]${}^2$ [O${}^2$]
step 1. NO + NO ⇔ N${}_2$O${}_2$ -(k1)-> <-(k-1)-
rate${}_{forw}$ = k${}_1$[NO]${}^2$ bimolecular
rate${}_{rev}$ = k${}_{-1}$[N${}^2$O${}^2$] monomolecular
step 2. O${}_2$ + N${}^2$O${}^2$ -(k2)-> NO${}_2$ + NO${}_2$
rate = k${}_2$[O${}_2$][N${}^2$O${}^2$]
(*) overall rate of NO${}_2$ formation = 2 k${}_2$[O${}_2$][N${}^2$O${}^2$]
you need to get rid of intermediate [O${}_2$][N${}^2$O${}^2$]
net formation of [O${}_2$][N${}^2$O${}^2$] = k${}_1$[NO]${}^2$ (formed) - k${}_{-1}$[N${}^2$O${}^2$] (decomposed) - k${}_2$[O${}_2$][N${}^2$O${}^2$] (consumed) = 0 @ equilibrium
[N${}^2$O${}^2$] (k${}_{-1}$ + k${}_2$[O${}_2$]) = k${}_1$[NO]${}^2$
(*) = 2k${}_1$k${}_2$[NO]${}^2$[O${}_2$] / (k${}_{-1}$ + k${}_2$[O${}_2$]) !!! not consistent
fast first step(also reversible) & slow second step. 'rate determining step'
first step @ quasi-equilibrium during the reaction
[NO][Br${}_2$]
Lec 33 | MIT 5.111 Principles of Chemical Science, Fall 2005
-> come up with appropriate mechanism to fit the experimental relationships
[NO]${}^2$ [O${}^2$]
step 1. NO + NO ⇔ N${}_2$O${}_2$ -(k1)-> <-(k-1)-
rate${}_{forw}$ = k${}_1$[NO]${}^2$ bimolecular
rate${}_{rev}$ = k${}_{-1}$[N${}^2$O${}^2$] monomolecular
step 2. O${}_2$ + N${}^2$O${}^2$ -(k2)-> NO${}_2$ + NO${}_2$
rate = k${}_2$[O${}_2$][N${}^2$O${}^2$]
(*) overall rate of NO${}_2$ formation = 2 k${}_2$[O${}_2$][N${}^2$O${}^2$]
you need to get rid of intermediate [O${}_2$][N${}^2$O${}^2$]
net formation of [O${}_2$][N${}^2$O${}^2$] = k${}_1$[NO]${}^2$ (formed) - k${}_{-1}$[N${}^2$O${}^2$] (decomposed) - k${}_2$[O${}_2$][N${}^2$O${}^2$] (consumed) = 0 @ equilibrium
[N${}^2$O${}^2$] (k${}_{-1}$ + k${}_2$[O${}_2$]) = k${}_1$[NO]${}^2$
(*) = 2k${}_1$k${}_2$[NO]${}^2$[O${}_2$] / (k${}_{-1}$ + k${}_2$[O${}_2$]) !!! not consistent
fast first step(also reversible) & slow second step. 'rate determining step'
first step @ quasi-equilibrium during the reaction
[NO][Br${}_2$]
Lec 33 | MIT 5.111 Principles of Chemical Science, Fall 2005
Thursday, January 08, 2009
5 11 1 32 kinetics continued & mechanisms
Becquerel = [s^-1]
@equilibrium ... rates of forward RxN and the rates of backward RxN are the same
A + B ⇔ C + D
-> @ k${}_{1}$[A][B]
<- @ k${}_{-1}$[C][D]
K = [C] [D] / [A][B]
then @ equilibrium k${}_{1}$ / k${}_{-1}$ = K
"elementary reaction" ... rate law can be written as eq. " the reaction order, the molecularity and the stoichiometric coefficient are the same"
"Molecularity"
Lec 32 | MIT 5.111 Principles of Chemical Science, Fall 2005
@equilibrium ... rates of forward RxN and the rates of backward RxN are the same
A + B ⇔ C + D
-> @ k${}_{1}$[A][B]
<- @ k${}_{-1}$[C][D]
K = [C] [D] / [A][B]
then @ equilibrium k${}_{1}$ / k${}_{-1}$ = K
"elementary reaction" ... rate law can be written as eq. " the reaction order, the molecularity and the stoichiometric coefficient are the same"
"Molecularity"
Lec 32 | MIT 5.111 Principles of Chemical Science, Fall 2005
Wednesday, January 07, 2009
UCB chem1a lec 33
cathode reduction acceptor
anode oxidation donner
Zn around Fe pipe ... sacrificial electrode metal
CH${}_4$ + O${}_2$ -> CO${}_2$ + H${}_2$O ... $\Delta$G${}^0$ = -818 kJ/mol
$\Delta$G std. state $\Delta$G = $\Delta$G${}^0$ + RL$\ln$Q $\frac{(1)}{{(1)}^2(1)}$ $\Delta$G = $\Delta$G${}^0$
$\Delta$G equil $\Delta$G = $\Delta$G${}^0$ + RL$\ln$Q = 0

anode oxidation donner
Zn around Fe pipe ... sacrificial electrode metal
CH${}_4$ + O${}_2$ -> CO${}_2$ + H${}_2$O ... $\Delta$G${}^0$ = -818 kJ/mol
$\Delta$G std. state $\Delta$G = $\Delta$G${}^0$ + RL$\ln$Q $\frac{(1)}{{(1)}^2(1)}$ $\Delta$G = $\Delta$G${}^0$
$\Delta$G equil $\Delta$G = $\Delta$G${}^0$ + RL$\ln$Q = 0
Sunday, January 04, 2009
5 11 1 31 kinetics
labile ... high rate
Rates of RxN = f (temperature ,concentration ,catalysts ,nature of material ,mechanism)
Rate Law 'k' rate constant <-> 'K' equilibrium constant
elementary reactions <-> RxN with mechanisim (steps)
'order' 'half-life'
Lec 31 | MIT 5.111 Principles of Chemical Science, Fall 2005
Rates of RxN = f (temperature ,concentration ,catalysts ,nature of material ,mechanism)
Rate Law 'k' rate constant <-> 'K' equilibrium constant
elementary reactions <-> RxN with mechanisim (steps)
'order' 'half-life'
Lec 31 | MIT 5.111 Principles of Chemical Science, Fall 2005
UCB chem1a lec 32
Energy,Enthalpy,Entropy "keeping track of " something invisible
Physical (#chemical) change
Heat transfer = q =q m C${}_p \Delta$T
Melting and Vaporize
Chemical bonds
H:Enthalpy
H--:Exothemic
H++:Endothermic (biologist call this "high energy"bond meaning highly reactive)
$\Delta$H
Bond dissociation - (atoms) , - of formation (elements) #2 reference point
$\Delta$G${}^0$
$\Delta$G${}^0$ = - R T $\ln$ K
$\Delta$G${}^0$ = - n F $\Delta$E${}^0_{cell}$
$\Delta$G${}^0$ = max work ?P$\Delta$V?
E${}^0$ standard 'reduction' potential

Physical (#chemical) change
Heat transfer = q =q m C${}_p \Delta$T
Melting and Vaporize
Chemical bonds
H:Enthalpy
H--:Exothemic
H++:Endothermic (biologist call this "high energy"bond meaning highly reactive)
$\Delta$H
Bond dissociation - (atoms) , - of formation (elements) #2 reference point
$\Delta$G${}^0$
$\Delta$G${}^0$ = - R T $\ln$ K
$\Delta$G${}^0$ = - n F $\Delta$E${}^0_{cell}$
$\Delta$G${}^0$ = max work ?P$\Delta$V?
E${}^0$ standard 'reduction' potential
Saturday, January 03, 2009
Thursday, January 01, 2009
5 11 1 30
energy levels are flipped @tetrahedral ligands configuration relative to @octahedral case
High spin system example [Fe(H${}_2$O)${}_6$]${}^{3+}$ ... d${}^5$ system = t${}_{2g}^3$ e${}_g^2$ Crystal Field Splitting Energy = 0 Weak field ligands
Low spin system example [Fe(CN)${}_6$]${}^{3+}$ ... d${}^5$ system Strong Field #Energy Gap > Pairing Energy
"Transition Complex" "cofactor"
paired -> diamagnetic, unpaired -> paramagnetic
Lec 30 | MIT 5.111 Principles of Chemical Science, Fall 2005
High spin system example [Fe(H${}_2$O)${}_6$]${}^{3+}$ ... d${}^5$ system = t${}_{2g}^3$ e${}_g^2$ Crystal Field Splitting Energy = 0 Weak field ligands
Low spin system example [Fe(CN)${}_6$]${}^{3+}$ ... d${}^5$ system Strong Field #Energy Gap > Pairing Energy
"Transition Complex" "cofactor"
paired -> diamagnetic, unpaired -> paramagnetic
Lec 30 | MIT 5.111 Principles of Chemical Science, Fall 2005
Subscribe to:
Posts (Atom)