Saturday, January 31, 2009

chem1a lec 41 spectroscopy

Ethane C${}_2$H${}_6$
Ethylene C${}_2$H${}_4$
Acetylene C${}_2$H${}_2$
UV/V -> valence electron transition ;DNA 200-300[nm]で破壊
iR -> molecular vibration
microwave -> molecular rotation
radio wave -> nuclear spin "juse as electrons do proton (a.k.a. H nucleous) have a spinView

Friday, January 30, 2009

chema1 40 molecular orbitals

MO diagram
molecular absorption bands, not lines.  due to nucleus vibrating.
$\sigma_{1S}$ bonding orbital
$\sigma^*_{1S}$ antibonding orbital
Bond order = $\frac{#bonding-electrons - #antibonding-e.}{2}$ > 0 if stable
unpaired electrons ... attracted to magnet O2 Yes(paramagnetic) N2|F2 No(diamagnetic) & "lewis dot structure" cannot predict this.
2p + 2p -> $\sigma_{2P}$ + $\sigma^*_{2P}$ + $\pi_{2P}$ + $\pi^*_{2P}$
pオービタルからパイだけでなくシグマもできるView


Thursday, January 29, 2009

Monday, January 26, 2009

chem1a 38 light spectra

electron knock-out:exact & arbitrary P.E. <-> electron excitation within atom:exact
Z${}^2$ n=1 to n=2 in Li${}^{2+}$ (11808(1312x9)-2952(328x9)) kJ/mol  H (1312-328)kJ/molView

Saturday, January 24, 2009

Friday, January 23, 2009

chem1a 36 periodic table

"electron configuration notation"
Ex. Be ... [He]2s${}^2$   Mg ... [Ne]3s${}^2$
"effective nuclear charge" trend <-> Ionization Energy trendView

Thursday, January 22, 2009

chem1a 35

$\Sigma$(ejected e${}^-$) /(atom|mol) = Energy injected /(atom|mol)View

Sunday, January 18, 2009

5 11 1 36 review

"cofactor" catalyst helper
electrolytic <-> galvanic


Lec 36 | MIT 5.111 Principles of Chemical Science, Fall 2005

5 11 1 35 catalyst

catalyst 'stabilize' or lower transition state (activated complex)
affects rate, but no change in thermodynamics
inhibitor <-> catalyst
heterogeneous ex. metal solid works as catalyst for a gass
reactants@chemistry -> substrates@biochemistry
'active site' ES complex product P
! dynamics <-> kinetics
Michaelis–Menten K${}_M$をv${}_{max}$とその半分を与える濃度から実験的に求めることができる(wikipedia)
peptide bond cleaved protease


Lec 35 | MIT 5.111 Principles of Chemical Science, Fall 2005

Sunday, January 11, 2009

5 11 1 34

Plot $\ln$ 'k' - inverse Temperature ... intercept 'A' the facor A| pre-exponential factor
slope ... Energy of activation / R "reaction coordinate" diagram Potential Energy-Reaction Coordinates
Big Activation Energy -> more sensitive to temperature change
$\Delta$H = $\Delta$E + $\Delta$(PV) (1-2% for gas 0% for solid,liquid)
if 1st step in 2 step RxN is exothermic, raising temperature might slow the overall reaction.



Lec 34 | MIT 5.111 Principles of Chemical Science, Fall 2005

UCB chem1a lec 34 all aglow: light energy

bolic acid B(OH)${}_3$ "roach prufe"
light different wavelength <-> momentum different mass balling ball pachinko ball
1 eV = 1240 nm = 242  THzView

Friday, January 09, 2009

5 11 1 33 Reaction Mechanism

k${}_{observed}$ k - [reactants] relationship k - [products] relationship
 -> come up with appropriate mechanism to fit the experimental relationships
[NO]${}^2$ [O${}^2$]

step 1. NO + NO ⇔ N${}_2$O${}_2$ -(k1)-> <-(k-1)-
 rate${}_{forw}$ = k${}_1$[NO]${}^2$ bimolecular
 rate${}_{rev}$ = k${}_{-1}$[N${}^2$O${}^2$] monomolecular
step 2.  O${}_2$ + N${}^2$O${}^2$ -(k2)-> NO${}_2$ + NO${}_2$
 rate = k${}_2$[O${}_2$][N${}^2$O${}^2$]
 (*) overall rate of NO${}_2$ formation = 2 k${}_2$[O${}_2$][N${}^2$O${}^2$]
you need to get rid of intermediate [O${}_2$][N${}^2$O${}^2$]
net formation of [O${}_2$][N${}^2$O${}^2$] = k${}_1$[NO]${}^2$ (formed) - k${}_{-1}$[N${}^2$O${}^2$] (decomposed) - k${}_2$[O${}_2$][N${}^2$O${}^2$] (consumed) = 0 @ equilibrium
[N${}^2$O${}^2$] (k${}_{-1}$ + k${}_2$[O${}_2$]) = k${}_1$[NO]${}^2$
 (*) = 2k${}_1$k${}_2$[NO]${}^2$[O${}_2$] / (k${}_{-1}$ + k${}_2$[O${}_2$]) !!! not consistent
fast first step(also reversible) & slow second step. 'rate determining step'
first step @ quasi-equilibrium during the reaction
[NO][Br${}_2$]


Lec 33 | MIT 5.111 Principles of Chemical Science, Fall 2005

Thursday, January 08, 2009

5 11 1 32 kinetics continued & mechanisms

Becquerel = [s^-1]
@equilibrium ... rates of forward RxN and the rates of backward RxN are the same
A + B ⇔ C + D
         -> @ k${}_{1}$[A][B]
         <- @ k${}_{-1}$[C][D]
K = [C] [D] / [A][B]
then @ equilibrium k${}_{1}$ / k${}_{-1}$ = K
"elementary reaction" ... rate law can be written as eq. " the reaction order, the molecularity and the stoichiometric coefficient are the same"
"Molecularity"


Lec 32 | MIT 5.111 Principles of Chemical Science, Fall 2005

Wednesday, January 07, 2009

UCB chem1a lec 33

cathode reduction acceptor
anode oxidation donner
Zn around Fe pipe ... sacrificial electrode metal

CH${}_4$ + O${}_2$ -> CO${}_2$ + H${}_2$O ... $\Delta$G${}^0$ = -818 kJ/mol
$\Delta$G std. state $\Delta$G = $\Delta$G${}^0$ + RL$\ln$Q $\frac{(1)}{{(1)}^2(1)}$ $\Delta$G = $\Delta$G${}^0$
$\Delta$G equil $\Delta$G = $\Delta$G${}^0$ + RL$\ln$Q = 0
View

Sunday, January 04, 2009

5 11 1 31 kinetics

labile ... high rate
Rates of RxN = f (temperature ,concentration ,catalysts ,nature of material ,mechanism)
Rate Law 'k' rate constant <-> 'K' equilibrium constant
 elementary reactions <-> RxN with mechanisim (steps)
'order' 'half-life'
 


Lec 31 | MIT 5.111 Principles of Chemical Science, Fall 2005

UCB chem1a lec 32

Energy,Enthalpy,Entropy "keeping track of " something invisible

Physical (#chemical) change
 Heat transfer = q =q m C${}_p \Delta$T
 Melting and Vaporize


Chemical bonds
 H:Enthalpy
 H--:Exothemic
 H++:Endothermic (biologist call this "high energy"bond meaning highly reactive)

$\Delta$H
 Bond dissociation - (atoms) , - of formation (elements) #2 reference point

$\Delta$G${}^0$
 $\Delta$G${}^0$ = - R T $\ln$ K
 $\Delta$G${}^0$ = - n F $\Delta$E${}^0_{cell}$
 $\Delta$G${}^0$ = max work  ?P$\Delta$V?

E${}^0$ standard 'reduction' potential

View




Saturday, January 03, 2009

UCB chem1a lec 31 the Sun

plasma ... the 4th states of matters
positron ... positive electronView

Thursday, January 01, 2009

UCB chem1a lec 30 Batteries

oxidize ... さびる、イオンになる、単体から化合物、-> +∞
reduction ...  戻る。単体になる。-> -∞
$\Delta$G = - n F $\Delta$E ... 'Maximum' work E自体は'n'つまり何価のとりひきかは関係しない。i.e. 端子間電圧を見るときには'n'を見ていない。
View

5 11 1 30

energy levels are flipped @tetrahedral ligands configuration relative to @octahedral case
High spin system example [Fe(H${}_2$O)${}_6$]${}^{3+}$ ... d${}^5$ system = t${}_{2g}^3$ e${}_g^2$ Crystal Field Splitting Energy = 0 Weak field ligands
Low spin system example [Fe(CN)${}_6$]${}^{3+}$ ... d${}^5$ system Strong Field #Energy Gap > Pairing Energy
"Transition Complex" "cofactor"
paired -> diamagnetic, unpaired -> paramagnetic


Lec 30 | MIT 5.111 Principles of Chemical Science, Fall 2005