G${}_{f0}$"free energy of formation" stability metric "thermodynamically stable relative to decomposition to elements" 0 for molecule stable at STP. Bromine diamonds >0 graphie oxygen =0
thermodynamic stability,kinetic stability (stability) <=> labile<->nonlabile(rate)
$\Delta$H<0 exothermic. $\Delta$G${}_0$と温度の関係は$\Delta$G${}_0$-Tのグラフで$\Delta$Hがintercept、entropyが-slopeであることから図的に考える。
$\Delta$G = $\Delta$G${}_0$+RT$\ln$(Q) ratio ... reaction quotient "Q" Q funtion (P) instantaneous partial pressure of reactants
$\Delta$G = 0 ... equilibrium (notice not $\Delta$G${}_0$ then Q becomes K
$\Delta$G = RT$\ln(\frac{Q}{K})$
Lec 18 | MIT 5.111 Principles of Chemical Science, Fall 2005
thermodynamic stability,kinetic stability (stability) <=> labile<->nonlabile(rate)
$\Delta$H<0 exothermic. $\Delta$G${}_0$と温度の関係は$\Delta$G${}_0$-Tのグラフで$\Delta$Hがintercept、entropyが-slopeであることから図的に考える。
$\Delta$G = $\Delta$G${}_0$+RT$\ln$(Q) ratio ... reaction quotient "Q" Q funtion (P) instantaneous partial pressure of reactants
$\Delta$G = 0 ... equilibrium (notice not $\Delta$G${}_0$ then Q becomes K
$\Delta$G = RT$\ln(\frac{Q}{K})$
Lec 18 | MIT 5.111 Principles of Chemical Science, Fall 2005
No comments:
Post a Comment